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Abstract

In this paper we propose a new approach to explore the stochastic frontier models which uses

the power of Bayesian quantile regression. Compared with usual models based on regression

in the conditional mean, our proposal inherits the advantages of quantile regression, such

as robustness of estimators as it does not need to assume any distribution to the data nor

assume homoscedasticity. Moreover, it also brings more details to the analyst since that

several quantiles provide more information about the stochastic frontier. In addition, our

proposal allows a better comparison of technical efficiency estimation among firms through

analysis of several quantiles in the stochastic frontier.

Keywords: Bayesian quantile regression, Gibbs sampling, Stochastic Frontier, Technical

efficiency.

1. Introduction

In economic theory, aspects of productive systems based in production functions may

be described by Stochastic Frontier models, introduced initially by Aigner et al. (1977)

and Meeusen and van den Broeck (1977). These models have been extensively applied

in the study of technical efficiencies of firms. Many proposals in the literature have been

established in what might be considered as a conditional mean environment, exploring solely

the relationship between the inputs and the conditional mean of output.

On the other hand, in recent years several works have explored the quantile estimation

in stochastic frontier models from a classical approach. Like Bernini et al. (2004) that fo-

Email addresses: angel@dme.ufrj.br (Angel Arroyo Hinostroza), ralph@im.ufrj.br (Ralph dos
Santos Silva), migon@im.ufrj.br (Helio dos Santos Migon)



158 Journal of Econometrics and Statistics

cused their attention on the composed error quantile estimation, and also the estimation

of technical efficiency. Or Liu et al. (2008) that through a Monte Carlo simulation sug-

gested that compared to non-parametric data envelopment analysis (DEA) and parametric

stochastic frontier analysis (SFA), the quantile regression approach is better (depending on

the quantile estimated) in terms of their ability to accurately estimate efficiencies. Behr

(2010) discussed the use of quantile regression estimation as a robust alternative to esti-

mate the production frontier, considered as a quantile close to one of the composed error,

and show that even when generating data according to the assumptions of the stochastic

frontier model, efficiency estimates obtained from quantile regressions resemble to efficiency

estimates obtained from SFA. Moreover, Jradi et al. (2019) affirmed that the stochastic

frontier corresponds explicitly to a specific quantile of the output distribution and provide

a computational approach to recover this quantile. In their work the estimation of technical

efficiency is again ignored.

We propose, from a Bayesian approach, a new form to apply the quantile estimation

in the stochastic frontier models. Instead of exploring the relationship between inputs and

output quantile, we explore the relationship between inputs and quantiles of efficient output

(i.e., the output without inefficiencies). Our proposal inherits the whole power of quantile

regression, which, in contrast to the conditional mean environment, provides more robust

estimators, does not need to assume homoscedasticity - this feature allows for increasing the

flexibility of the model - and no need to specify the likelihood (a distribution for the error

term). See Li (2015) for a discussion about the advantages of quantile regression models.

The outline of this paper is organized as follows. A short background about Bayesian

quantile regression models and stochastic frontier models is given in Section 2. Our proposed

model and Bayesian inference is shown in Section 3. Monte Carlo studies are reported in

Section 4, and real data applications are presented in Section 5. Section 6 concludes.
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2. Review

2.1. Bayesian quantile regression model

Let yi be the continuous response variable and xi be the p-dimensional vector of covariates

for the i-th observation (i = 1, . . . ,N). For some τ ∈ (0, 1), Qτ (yi | xi) denote the τ -th

quantile regression function of yi given xi. Suppose that there exists a linear relationship

between Qτ (yi | xi) and xi, i.e., Qτ (yi | xi) = x�
i βτ , where βτ is a p-dimensional parameter

vector.

The quantile regression model is usually expressed by

yi = x�
i βτ + εi, i = 1, . . . ,N, (1)

where εi’s are independent and identically distributed (i.i.d.) error terms restricted to have

the τ -quantile equal to zero, i.e., Pr(εi � 0) = τ . The error distribution is often left

unspecified and the estimation for β (the τ has been dropped from βτ to simplify the

notation) proceeds by minimizing

S(β) =
∑

i ρτ (yi − x�
i β), (2)

where ρτ (ε) = ε{τ − I(−∞,0)(ε)} is called the quantile loss (or check) function, and IA(.)

denotes the usual indicator function of the subset A. Details about quantile regression from

a classical approach can be found in Koenker (2005).

From a Bayesian perspective, Yu and Moyeed (2001) proposed to model the error term,

εi, in Equation (1) with the asymmetric Laplace distribution, denoted by LAτ (µ, σ), where

τ ∈ (0, 1), µ ∈ R and σ ∈ (0,∞) are the quantile, the location and the scale parameters,

respectively. In their proposal, they kept τ known and fixed. Moreover, based on a random

sample, their construction led to the (auxiliary) likelihood function given by

L(β, σ) =
τN(1− τ)N

σN
exp

{
− 1

σ

∑
i ρτ (yi − x�

i β)

}
. (3)

Considering improper uniform priors for β (and σ = 1), Yu and Moyeed (2001) proved that

the posterior distribution of β is proper although it has no closed form. They employed the
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Metropolis algorithm, with slow convergence, to draw a sample from the posterior distribu-

tion. Additionally, Sriram et al. (2013) explored the consistency of the quantile regression

estimator based on the auxiliary likelihood in Equation (3), and proposed an approximation

to the posterior distribution for large samples, specially to reduce the bias on the posterior

covariance matrix.

Using a location-scale mixture of normals representation of the asymmetric Laplace dis-

tribution (with σ = 1) and a Gaussian prior for β, Kozumi and Kobayashi (2011) showed

that it is possible to get full conditional distributions in closed form which are, in turn,

easy to sample from. This strategy allows the implementation of a computationally efficient

Gibbs sampler algorithm. It can also be easily extended to include σ estimation.

A random variable ε with LAτ (0, σ) distribution admits a location-scale mixture repre-

sentation κ1ν+z
√
κ2σν, where κ1 = (1−2τ)/[(τ(1−τ)] and κ2 = 2/[τ(1−τ)] are constants,

ν is a latent variable with exponential distribution with mean σ, denoted by ν ∼ E(σ), and

z is a random variable with standard normal distribution, denoted by z ∼ N (0, 1). More

information about properties of asymmetric Laplace distribution and its representations can

be found in Kotz et al. (2001).

Then, using the result above and Equation (1), the Bayesian quantile regression model

can alternatively be constructed by

(yi | β, σ, νi) ∼ N (x�
i β + κ1νi, κ2σνi)

(νi | σ) ∼ E(σ), i = 1, . . . ,N.

The Bayesian model specification is completed by choosing the prior distribution as

π(β, σ) = π(β)π(σ), with β having a p-variate Gaussian distribution with mean m0 and

covariance matrix C0, denoted by β ∼ Np(m0,C0), and σ as an inverse gamma distribution,

denoted by σ ∼ IG(n0, s0), where n0 and s0 represent its shape and scale parameters,

respectively.

The posterior distribution of (β, σ) is obtained under a data augmentation scheme
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π(β, σ | y) ∝
∫
π(β, σ,ν | y)dν where

π(β, σ,ν | y) ∝

[∏
i

f(yi | β, σ, νi)

][∏
i

π(νi | σ)

]
π(β)π(σ), (4)

with y = (y1, . . . , yN)
� and ν = (ν1, . . . , νN)

�. It is straightforward to prove that the

resulting full conditional distributions from Equation (4) are Gaussian for (β | y,ν, σ),

inverse gamma for (σ | y,ν,β) and generalized inverse Gaussian (Jørgensen, 1982) for

(νi | yi,β, σ), for i = 1, . . . ,N. This allows for the implementation of the Gibbs sampler

algorithm to draw a sample from the posterior distribution.

However, the consistency showed by Sriram et al. (2013) does not guarantee adequate

credibility interval estimates for the quantile regression parameters. The employment of

the auxiliary likelihood in Equation (3), based on the asymmetric Laplace distribution,

generates underestimation of the posterior variances of the quantile regression parameters

when compared to a possibly true error distribution different from the asymmetric Laplace.

This feature is exacerbated when considering extremes quantiles (away from the median).

Yang et al. (2016) described this problem and developed, under conditions that guarantee the

asymptotic normality of the quantile regression estimators, an adjustment in the posterior

covariance matrix to obtain asymptotically-based interval estimates. We pursue this idea

later on.

2.2. Stochastic frontier models

To define the elements of stochastic frontier models more generally (panel data model)

let yit be the output quantity and xit be the p-dimensional vector of inputs quantities for

the i-th firm (i = 1, . . . ,N) at time t (t = 1, . . . ,T). The case T = 1 corresponds to

cross-sectional model, in which case the input and output quantities are denoted by yi and

xi, respectively. Let f(xit;β) be the functional form which relates the output and input

quantities, where β is a parameter vector. In particular, the production function can be

considered as functional form for simplicity. Many common production functions are listed

in Coelli et al. (2005, Table 8.1).
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The seminal stochastic frontier model, proposed by Aigner et al. (1977) and Meeusen

and van den Broeck (1977), is given by

yi = f(xi;β) + εi − ωi, i = 1, . . . ,N. (5)

In this modeling the production process is subject to two random disturbances. The first

one, denoted by ωi, is defined as non-negative disturbance which generates a decrease in the

firms output. This disturbance is called technical inefficiency and it is the result of factors

under the firms control. The second disturbance, denoted by εi, is defined as a random error

term without signal constraint which measure the effect of uncontrolled variables, and often

considered with Gaussian distribution, although there are proposals considering robustness

through the Student-t distribution (Griffin and Steel, 2007).

There is a vast literature discussing the stochastic frontier models. In the case of cross-

sectional models, it is usually assumed that the inefficiencies (ωi) are i.i.d. with one-sided

distribution such as truncated Gaussian (Aigner et al., 1977), exponential (Meeusen and

van den Broeck, 1977) or gamma (Greene, 1990; Tsionas, 2000). Regarding panel data

models, the inefficiency specification proposed by Battese and Coelli (1995) have been cus-

tomarily used in empirical applications. Their panel data model proposal considers the Cobb

Douglas production function (Cobb and Douglas, 1928) and can be written as

yit = x�
itβ + εit − ωit, i = 1, . . . ,N; and t = 1, . . . ,T, (6)

where yit denotes the log-production for the i-th firm at time t, and the technical inefficiency

ωit is characterized to be truncated Gaussian distribution ωit ∼ N[0,∞)(r
�
itδ, σ

2
ω). Here, rit

is the vector of explanatory variables that explains the technical inefficiencies, δ is the

parameter vector associated to such variables and σ2
ω is a scale parameter. Moreover, an

economic measure of efficiency - called technical efficiency (TE) - is defined as the ability

to maximize the output from a given input quantity combination (Battese and Coelli, 1992)

and it is computed as TEit = exp(−ωit).

Concerning the use of Bayesian methods for inference in stochastic frontier models,

van den Broeck et al. (1994) used Bayesian analysis based on importance sampling whilst
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Tsionas (2002) resorted to Gibbs sampler to explore the posterior distribution in a model

with random coefficients to separate technical inefficiency from technological differences

across firms. In addition, Tsionas (2006) assumed a dynamic structure to model technical

inefficiencies and another Gibbs sampling with data augmentation was employed.

More recently, Tsionas and Kumbhakar (2014) from a Bayesian approach, and Colombi

et al. (2014); Filippini and Greene (2016); Lai and Kumbhakar (2018) from a classical ap-

proach considered a stochastic frontier panel data model in which the random firm-effects

are separated from the persistent (time-invariant) and transient (time-varying) technical

inefficiency.

3. Bayesian quantile stochastic frontier models

Let yit be the output (the log-production, for example) and xit be the input (the log-

capital and the log-labour, for example) quantities for the i-th firm at time t, as defined in

Section 2.2. Our proposal consists in exploring more widely the stochastic frontier through

a quantile analysis of it. To simplify the exposition of our proposal, we assume that only

two disturbance terms influence the productive process: the firm technical inefficiency ωi

and the error term εit. From here, our proposal can be extended to other structures.

For a fixed quantile τ ∈ (0, 1), and conditioned to technical inefficiency ω
(τ)
i (measure

from the τ -quantile of stochastic frontier), let fτ (xit;βτ ) be the functional form which de-

scribes the relationship between the τ -quantile of output without inefficiency yit + ω
(τ)
i and

input quantities. The parameter to be estimated, βτ , and the technical inefficiency ω
(τ)
i

depends on the quantile τ (to simplify notation we will drop the τ index in the βτ and ω
(τ)
i

expressions hereinafter). Given theses assumptions, our proposed model can be written as

yit = fτ (xit;β) + εit − ωi, i = 1, . . . ,N. (7)

Various functional forms f can be specified. In particular, one can consider the linear

functional form fτ (xit;β) = x�
itβ, which is compatible, for example, with the Cobb Douglas

and Translog production functions. Regarding the distribution specification of technical

inefficiency, several distributions were considered in the literature, as discussed previously
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in Section 2.2. Here, we assume that the technical inefficiencies are i.i.d. with half-Gaussian

distribution, (ωi | σ2
ω) ∼ N[0,∞)(0, σ

2
ω), where σ2

ω is a scale parameter. The random error

distribution and the likelihood function are not specified.

As in Section 2.1 - to infer the model parameters from a Bayesian approach - we assume

the asymmetric Laplace distribution with location parameter zero, asymmetric parameter

τ (known and fixed) and unknown scale parameter σε to the error term (Yu and Moyeed,

2001) which is denoted by LAτ (0; σε). Through Gaussian-exponential mixture representa-

tion of the asymmetric Laplace distribution (Kotz et al., 2001), the model admits hierarchical

representation and can be rewritten as

(yit | β, σε, νit, ωi) ∼ N (x�
itβ + κ1νit − ωi, κ2σενit)

(νit | σε) ∼ E(σε)

(ωi | σ2
ω) ∼ N[0,∞)(0, σ

2
ω), (8)

where κ1 =
1− 2τ

τ(1− τ)
and κ2 =

2

τ(1− τ)
are constants, i = 1, . . . ,N and t = 1, . . . ,T.

To complete our Bayesian model specification, defining the parameter vector as θ =

(β, σε, σ
2
ω), we take π(θ) = π(β)π(σε)π(σ

2
ω) such that β ∼ N (m0,C0), σε ∼ IG(nε0, sε0)

and σ2
ω ∼ IG(nω0, sω0). This choice simplifies the computation of the full conditional distri-

butions.

To simplify the notation, we have the following definitions: yt = (y1t, . . . , yNt)
�, y =

(y�
1 , . . . ,y

�
T)

�, xt = (x1t, . . . ,xNt)
�, X = (x�

1 , . . . ,x
�
N)

�, νt = (ν1t, . . . , νNt)
�, ν =

(ν�
1 , . . . ,ν

�
T)

�, ω = (ω1, . . . , ωN)
�, and ω̃ = (ω�, . . . ,ω�)�.

Note that (y | θ,ν,ω) ∼ N (µy,Σy) with µy = Xβ + κ1ν − ω̃ and Σy = κ2σεdiag(ν),

where diag(ν) represents a diagonal matrix.

The posterior distributions π(θ | y) and π(ω | y) are obtained through a data aug-

mentation scheme with latent variable ν, i.e. π(θ | y) =
∫ ∫

π(θ,ν,ω | y)dνdω and

π(ω | y) =
∫ ∫

π(θ,ν,ω | y)dνdθ, where

π(θ,ν,ω | y) ∝
[∏

t,i f(yit | β, σε, νit, ωi)
][∏

t,i f(νit | σε)
]
[
∏

i f(ωi | σ2
ω)]π(θ).

The augmented posterior distribution π(θ,ν,ω | y) is not easy to manipulate algebraically.
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However, full conditional distributions are available in known closed-form and easy to sample

from. Such distributions are given by

(β | y,ν,ω, σε) ∼ N (m,C),

(σε | y,ν,ω,β) ∼ IG(nε, sε),

(νit | yit,β, σε, ωi) ∼ GIG (0.5, χit, ψit) ,

(σ2
ω | ω) ∼ IG(nω, sω),

(ωi | yit, νit,β, σε, σ
2
ω) ∼ N[0,∞)(mωi

, Cωi
), (9)

where

C−1 = X�Σ−1
y X+C−1

0 ,

m = C
[
X�Σ−1

y (y − κ1ν + ω̃) +C−1
0 m0

]
,

nε = nε0 + 3NT/2,

sε = sε0 +
∑

t,iνit + (y − µy)
�[diag(ν)]−1(y − µy)/(2κ2),

χit = (yit − x�
itβ + ωi)

2/(κ2σε),

ψit =
[
2 + κ2

1/κ2

]
/σε,

nω = nω0 +N/2,

sω = sω0 + ω�ω/2,

C−1
ωi

= (κ2σε)
−1∑

tν
−1
it + (σ2

ω)
−1
,

mωi
= −Cωi

∑
t

[
(yit − x�

itβ − κ1νit)/(κ2σενit)
]
.

The notation GIG(·, ·, ·) denotes the generalized inverse Gaussian distribution (Jørgensen,

1982). The Gibbs sampling algorithm can be used to obtain a posterior sample of θ, ν and

ω.

Under regularity conditions, the (posterior) technical efficiency for the i-th firm, mea-

sured from the stochastic frontier τ -quantile and specified as TEi = E[exp(−ωi)|y], can be

estimated from the posterior sample of ωi by

TEi ≈
1

M

∑
k exp(−ω

(k)
i ), ω

(k)
i

iid∼ π(ωi|y), k = 1, . . . ,M.

9
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To construct credible intervals, for the quantile regression parameters (β), with adequate

credibility we can use the asymptotic posterior distribution of β that, as detailed in Yang

et al. (2016), is approximately Gaussian. Let the asymptotic posterior distribution of β be

N (µβ,Σβ). The location parameter µβ can be estimated for the average of the posterior

sample of β and the posterior covariance Σβ is approximate as

Σβ ≈ nτ(1− τ)

σ̂2
Cov(β(1), . . . ,β(M))X�XCov(β(1), . . . ,β(M)), (10)

where σ̂2 denotes the point estimation of σ2 (we use the average of the posterior sample),

β(1), . . . ,β(M) denotes the posterior sample of β obtained from the use of Laplace asymmetric

likelihood, and Cov(β(1), . . . ,β(M)) is the sample covariance matrix.

4. Monte Carlo study

Consider the model in Equation (7) with linear functional form, single covariate and

intercept, i.e.

yit = β0 + β1xit + εit − ωi, i = 1, . . . ,N and t = 1, . . . ,T.

The functional form β0 + β1x represents the τ -quantile of the stochastic frontier. In this

sense, the error term must satisfy Pr(εit � 0) = τ . Assuming that the error term distribution

is Gaussian, then εi
iid∼ N (−σεΦ

−1(τ), σ2
ε), where Φ

−1(·) denotes the inverse of the Gaussian

cumulative distribution function.

Data sets are generated with the following settings: β0 = 0.3, β1 = 0.5, σ2
ε = 0.01,

xit
iid∼ U(0, 1), ωi

iid∼ N[0,∞)(0, σ
2
ω = 0.02), N = 30 (number of firms), T ∈ {20, 50, 100}

(number of periods) and τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. An example from the generated data sets

is exhibit in Figure 1 where the solid line represent the τ -quantile of the stochastic frontier

(β0 + β1xit), the black points display the unobserved efficient production (β0 + β1xit + εit),

and the gray points show the production yit.

Each of the 15 cases (combination of the number of periods and quantiles) uses M =

1, 000 Monte Carlo replications. A Gibbs sampler is implemented from the full conditional

10
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0.1−quantile of stochastic frontier.
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0.5−quantile of stochastic frontier.
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Figure 1: Data generate from yit = 0.3 + 0.5xit + εit − ωi, xit
iid∼ U(0, 1), εit

iid∼ N (0, 0.01) and ωi
iid∼

N[0,∞)(0, 0.02); for i = 1, . . . , 30 and t = 1, . . . , 20. The functional form 0.3 + 0.5xit, represented by the

solid line, is the τ -quantile of stochastic frontier, for τ = 0.1 (left), τ = 0.5 (center) and τ = 0.9 (right).

The black points represent the unobserved efficient production and the gray points represent the (observed)

production.

distributions in Equation (9). In preliminary tests, rapid convergence and low autocorrela-

tions were observed in the generated MCMC chains. However, initial values for the technical

efficiencies must be chosen with care. In our full study, we consider appropriate posterior

samples obtained (in each replication) from two MCMC chains of length 5,100 with burn-in

99 and thinning 5.

We evaluate the consistency of the estimators through the (estimated) mean squared

error (MSE), which is computed as

MSE(θ) =
1

M

∑
k

[
θ̂(k) − θ0

]2
,

where θ̂(k) is the posterior mean relative to the k-th Monte Carlo replication (k = 1, . . . ,M)
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and θ0 is the value of θ that was used to generates the observations.

Figure 2 summarises the MSE relative to the stochastic frontier parameters (the intercept

on the left and the slope on the right) in each the five evaluate quantiles and each number

of periods. The results suggest consistency of the parameter estimators.

0e
+0

0
2e

−0
4

4e
−0

4

Number of periods

M
S

E

20 50 100

●

●
●

●

τ = 0.1
τ = 0.3
τ = 0.5
τ = 0.7
τ = 0.9

0e
+0

0
2e

−0
4

4e
−0

4

Number of periods

M
S

E

20 50 100

●

●

●

●

τ = 0.1
τ = 0.3
τ = 0.5
τ = 0.7
τ = 0.9

Figure 2: Mean squared error estimate of regression parameters: intercept (left) and slope (right).

Moreover, Figure 3 exhibits the MSE relative to the technical efficiency in each of the

30 firms in each the five evaluate quantiles and each number of periods. Here, the results

suggest consistency of the technical efficiency estimators.

The credibility of the interval estimates are evaluated through empirical coverage prob-

ability (ECP), defined as

ECP(θ) =
1

M

∑
k1

[
θ
(k)
α/2

,θ
(k)
1−α/2

](θ0),

where 1A(·) denotes the indicator function of a set A, (1−α) represent the credibility of the

interval estimation to θ given by
[
θ
(k)
α/2, θ

(k)
1−α/2

]
and θ

(k)
q denotes the estimated q-quantile of

the posterior distribution of θ relative to the k-th Monte Carlo replication, with θ0 defined

as above. We consider (1− α) = 95% credibility in all intervals computed.

When the limits of credible intervals (relative to the stochastic frontier parameters β) are

computed using the covariance of the Gaussian asymptotic distribution, showed in Equation

(10), the ECP derived will be named adjusted empirical coverage probability and denoted by

ECPadj.
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Figure 3: Mean squared error estimate of the technical efficiency in each of the 30 companies. Top: 0.1-

quantile (left), 0.3-quantile (center) and 0.5-quantile (right). Bottom: 0.7-quantile (left) and 0.9-quantile

(right).

Figure 4 exhibits the nominal 95% credibility (dotted line) and the ECP (in the top)

or ECPadj (in the bottom) of the stochastic frontier parameters β in each quantile for 20

(left), 50 (center) and 100 (right) periods. The results confirm that the employment of the

asymptotic distribution is necessary for computing more adequate credible intervals for the

stochastic frontier parameters, mainly when quantiles are away from the median.

The nominal 95% credibility and the ECP for the technical efficiencies of all 30 firms in

the evaluated quantiles whilst the number of periods is 20 (left), 50 (center) and 100(right)

are showed in Figure 5. This result shown an over-coverage in relation to the interval

estimation of technical efficiencies.
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Figure 4: Nominal 95% credibility and ECP (top) or ECPadj (bottom) of the stochastic frontier parameters

for the five evaluated quantiles (τ) whilst the number of periods is 20 (left), 50 (center) and 100(right).
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Figure 5: Nominal 95% credibility and ECP for all of the technical efficiencies for the five evaluated quantiles

(τ) when the number of periods is 20 (left), 50 (center) and 100(right).

5. Applications

To illustrate the proposed model, we apply our methodology in two data sets. The

first one, named front41Data, is a cross-sectional data of 60 firms. The second, named
14
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riceProdPhil, is a panel data with annual information collected from 43 smallholder rice

producers in the Tarlac region of the Philippines between 1990 and 1997. Both data sets

are available in the frontier1 package (Coelli and Henningsen, 2013) of R (R Core Team,

2020).

5.1. front41Data

This data contain cross-sectional observations about output (production), capital and

labour of 60 firms. The model can be written as

log(outputi) = β0 + β1 log(capitali) + β2 log(labouri)− ωi + εi, i = 1, . . . , 60,

where for the i-th firm, ωi is the technical inefficiency and εi is the error term. The quantile

regression parameters β = (β0, β1, β2)
� and technical inefficiencies depend of the quantile

τ . The next assumptions are considered: ωi ∼ N[0,∞)(0, σ
2
ω), and, although the likelihood is

misspecified, we use the asymmetric Laplace distribution to develop the Bayesian quantile

regression in the stochastic production frontier, as detailed in Section 3.

Specifying a conjugate Gaussian-Gamma Inverse prior gives known full conditional distri-

butions which, in turn, allow the implementation of the Gibbs sampling algorithm. Details

about conditional distributions can be found in Appendix A (for T = 1). Each posterior

sample (related to each quantile τ ∈ {0.1, 0.2, . . . , 0.9}) is composed of 1,000 elements drawn

from 55,000 iterations, 5,000 as burn-in and 50 as thinning.

Results about the quantile regression parameters, β, of the stochastic production frontier

are exhibits in the Figure 6. The diagonal shown the posterior mean, and the 50% and

95% credible interval limits of β at each quantile, τ ∈ {0.1, 0.2, . . . , 0.9}, of the stochastic

production frontier. The lower and upper triangle includes scatter plots related to posterior

sample related to: the median (τ = 0.5) regression parameters (lower triangle) and the

1The frontier package is used to obtain maximum likelihood estimates of stochastic frontier parameters,

and estimates of mean and individual technical efficiencies. Two specifications are available: the error

components specification with time-varying efficiencies (Battese and Coelli, 1992) and a model specification

in which the firm effects are directly influenced by a number of variables (Battese and Coelli, 1995).
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τ -quantile regression parameters - τ = 0.1 (black) and τ = 0.9 (gray) - (upper triangle),

respectively.
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Figure 6: Posterior sample of the quantile regression parameters. Diagonal: Posterior mean (square), 50%

credible interval limits (triangles) and 95% credible interval limits (circles) of the τ -quantile regression

parameters, τ ∈ {0.1, 0.2, . . . , 0.9}. Upper triangle: Scatter plots for the posterior sample of τ = 0.1 (black)

and τ = 0.9 (gray) quantile regression parameters. Lower triangle: Scatter plots for the posterior sample of

τ = 0.5 quantile parameters. The dashed line (in the diagonal) and the white square (in the scatter plots)

represent the maximum likelihood estimate provided for the frontier package.
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The non-statistically significant results for the estimates corresponding to the log-capital

(β1) e log-labour (β2) coefficients - with respect to the stochastic frontier quantiles - suggest

presence of homocedasticity in the data. Regarding the intercept (β0) the results indicate

that the stochastic production frontier has low variability.

In this application our estimates are compatible with the maximum likelihood estimate

due to homocedasticity and absence of outliers. Presence of heterocedasticity does not affect

our proposed model, and outliers have less impact on the estimates compared with the fairly

used conditional mean regression model. In summary, our proposal provides more complete

information on the stochastic production frontier.

The technical efficiency is estimated for each firm i = 1, . . . , 60 and for each analysed

quantile of the stochastic frontier (τ ∈ {0.1, 0.2, . . . , 0.9}). The left and center plot in Figure

7 shown the credible intervals in each quantile of stochastic frontier of the firms 35 and 12

– firms with the lowest and highest technical efficiency respectively (we use the posterior

medians to compare technical efficiencies).
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Figure 7: Posterior median (square), 0.025, 0.975 quantile (circle) and 0.25, 0.75 quantile (triangle) of

the technical efficiencies, for the quantile regression of the stochastic production frontier was evaluate in

the quantiles τ = 0.1, 0.2, . . . , 0.9, relative to the firm with smallest (left), and largest (center) technical

efficiency mean. The dotted line represent the estimate obtained with the frontier package.

In this application we observed that, when measured from the lowest quantiles of the

stochastic frontier, the technical efficiency of the firms reveals significant differences. This

is corroborated in the Figure 8.
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Figure 8: Posterior distribution of technical efficiencies related to firm 35 (continuous line) and 12 (dotted

line), measured from the 0.1 (left), 0.5 (middle) and 0.9 (right) quantile of the stochastic frontier.

5.2. riceProdPhil

This data set, used as methodological illustration in several works (Coelli et al., 2005;

Rho and Schmidt, 2015; Parmeter et al., 2019; Jradi et al., 2019, as example), corresponds to

annual information over eight years of 43 rice producers. Details about data collection can

be found in Pandey et al. (1999). For each rice producer and year, the information collected

includes: production (tonnes of freshly threshed rice), area (hectares of planted rice), labour

(man-days of family and hired labour) and npk (Fertiliser used, measured in Kg.).

Using the thanslog production function, the problem can be modeled as

log(productionit) = β0 + β1 log(areait) + β2 log(labourit) + β3 log(npkit)

+β4 log(areait)
2/2 + β5 log(labourit)

2/2 + β6 log(npkit)
2/2

+β7 log(areait) log(labourit) + β8 log(areait) log(npkit)

+β9 log(labourit) log(npkit) + εit − ωi

where, for the i-th firm at time t, ωi denotes the technical inefficiency and εit is the error term.

It is important to remember that the quantile regression parameters β = (β0, β1, . . . , β9)
�

and the technical inefficiencies depend of the analyzed quantile (τ) of the stochastic frontier.

We assume inefficiencies with half-normal distribution, i.e. ωi ∼ N[0,∞)(0, σ
2
ω), and again

although the likelihood is misspecified, we assume errors with asymmetric Laplace distribu-
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tion εit ∼ LAτ (0, σε) to infer the parameters and technical (in)efficiencies using the proposal

presented in Section 3.

To complete the specification we consider the prior π(β, σε, σ
2
ω) = π(β)π(σε)π(σ

2
ω), where

β ∼ N (0, 100), σε ∼ IG(0.01, 0.01) and σ2
ω ∼ IG(0.01, 0.01).

The posterior sample for each regression (one for each quantile evaluate) was obtained

from two MCMC chains that converged quickly and had low autocorrelations, in each chain

with 1,000 elements drawn from 5,100 iterations, 99 as burn-in and 5 as thinning.

Results are exhibited in Figure 9 which shows for each quantile regression parameter

(βp, p = 0, . . . , 9), the median (square), 50% credible interval limits (triangles) and 95%

credible interval limits (circles) in each evaluated quantile (τ ∈ {0.1, 0.2, 0.3, 0.5, 0.7, 0.9})

of the stochastic frontier. The limits of (1−α)% credible interval are given by the quantiles

α/2 and 1− α/2 of the posterior sample.

Regarding the intercept (β0) the results show that the posterior median increases when

the analyzed quantile of the stochastic frontier is higher. This is consistent with the assump-

tion of the linearity of the relationship between the inputs and stochastic frontier quantiles.

Regarding the other regression parameters (βp, p = 1, . . . , 9), we observed slight differences

among credible intervals for differing quantiles of the stochastic frontier evaluated. This

may imply heteroskedasticity in the data, although in some cases these differences may be

non-statistically significant. Thus, it suggests a possibly more flexible modeling such as

median regression or other specifications.

In particular, we can focus on the median regression - a most robust regression compared

with the conditional mean. The Figure 10 shows the posterior densities (dashed lines), the

asymptotic distributions (solid line) and the prior densities (dotted line) of the median

regression parameters in the riceProdPhil dataset.

The posterior median and the 95% credible intervals to technical efficiencies relative to

median regression are showed in Figure 11. This results allow us to compare the performance

of the firms productivity and to find significantly statistical differences.
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Figure 9: Posterior sample related to riceProdPhil data.
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Figure 10: Asymptotic (solid line), posterior (dashed line) and prior (dotted line) densities related to the

median regression parameters in riceProdPhil data.
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Figure 11: Posterior median and the 95% credible intervals to technical efficiencies for the median regression

stochastic frontier model.

6. Concluding remarks

A quantile exploration of the relationship between inputs and outputs in stochastic fron-

tier models can be beneficial in many senses. First, it is possible - since the evaluation of

several stochastic frontier quantiles - to form an opinion about the adequacy of the func-

tional form of the production function and presence or not of homocedasticity in the data.

The technical efficiency can be measured from various stochastic frontier quantiles. In par-

ticular, when the stochastic frontier quantile is the median, we have a robust alternative

to the conditional mean approach which deals with heteroscedasticity and does not need a

specification of the likelihood.

Our proposal provides a method to infer the quantile regression parameters and technical

efficiencies from a Bayesian perspective through a fast converging Gibbs sampler. Although

the estimated covariance matrix for the parameters is underestimated, it is possible to adjust

such covariance matrix as showed in Section 3.

Our proposed model can be extended in several directions. It can include time-varying

stochastic frontier parameter (Gonçalves et al., 2020), or explore the pertinence of stochastic

frontier of four factors. One may also study other distributions for technical inefficiency.
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Appendix A. Full conditional distributions

The rewritten model in Equation (8) is given by

(yit | β, σε, νit, ωi) ∼ N (x�
itβ + κ1νit − ωi, κ2σενit)

(νit | σε) ∼ E(σε)

(ωi | σ2
ω) ∼ N[0,∞)(0, σ

2
ω), i = 1, . . . ,N and t = 1, . . . ,T.

where κ1 = [1− 2τ ]/[τ(1− τ)] and κ2 = 2/[τ(1− τ)] are constants.

We specified the prior distribution to θ = (β, σε, σ
2
ω) as π(θ) = π(β)π(σε)π(σ

2
ω), such

that: β ∼ N (mβ0,Cβ0); σε ∼ IG(nε0, sε0) and σ2
ω ∼ IG(nω0, sω0).

Using the Bayes theorem, the augmented posterior distribution to the parameters θ,

auxiliary variable and technical inefficiencies is proportional to

[∏
t,i f(yit | β, σε, νit, ωi)

][∏
t,i f(νit | σε)

][∏
if(ωi | σ2

ω)
]
π(θ),

since that the prior are a proper distribution.

To simplify the notation we define the next elements for t = 1, . . . ,T: yt = (y1t, . . . , yNt)
�,

y = (y�
1 , . . . ,y

�
T)

�, xt = (x1t, . . . ,xNt)
�, X = (x�

1 , . . . ,x
�
N)

�, νt = (ν1t, . . . , νNt)
�, ν =

(ν�
1 , . . . ,ν

�
T)

�, ω = (ω1, . . . , ωN)
� and the (N×T)-dimensional vector ω̃ = (ω�, . . . ,ω�)�.

The calculation of full conditional distributions is displayed below (all constant terms

were ignored).

Note that (y | θ,ν,ω) ∼ N (µy,Σy) with µy = Xβ + κ1ν − ω̃ and Σy = κ2σεdiag(ν),

being that diag(ν) denotes a matrix with diagonal given by ν and zero off-diagonal entries.
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Thus

π(β | y,ν,ω, σε) ∝
[∏

t,i f(yit | β, σε, νit, ωi)
]
π(β)

∝ exp

[
−1

2
(y − µy)

�Σ−1
y (y − µy)

]
exp

[
−1

2
(β −m0)

�C−1
0 (β −m0)

]

∝ exp

[
−1

2
(β�X�Σ−1

y Xβ − β�X�Σ−1
y (y − κ1ν + ω̃)

−(y − κ1ν + ω̃)�Σ−1
y Xβ)

]

exp

[
−1

2
(β�C−1

0 β − β�C−1
0 m0 −m�

0 C
−1
0 β)

]

Define C−1 = X�Σ−1
y X+C−1

0 , then

π(β | y,ν,ω, σε) ∝ exp

[
−1

2
(β�C−1β − β�C−1C[X�Σ−1

y (y − κ1ν + ω̃) +C−1
0 m0]

−[X�Σ−1
y (y − κ1ν + ω̃) +C−1

0 m0]
�C�C−1β)

]
,

define also m = C
[
X�Σ−1

y (y − κ1ν + ω̃) +C−1
0 m0

]
, thus

π(β | y,ν,ω, σε) ∝ exp

[
−1

2
(β −m)�C−1(β −m)

]
,

which is the kernel of the Gaussian distribution, i.e. (β | y,ν,ω, σε) ∼ N (m,C).

π(σε | y,ν,ω,β) ∝ f(y | θ,ν,ω)
[∏

t,if(νit | σε)
]
π(σε)

∝ |Σy|−1/2 exp

[
−1

2
(y − µy)

�Σ−1
y (y − µy)

] [∏
t,iσε exp

(
−νit
σε

)]

σ−(nε0+1)
ε exp

[
−sε0

σε

]

∝ σ−(nε0+3NT/2+1)
ε

× exp

[
− 1

σε

(
sε0 +

∑
i,t

νit +
(y − µy)

�[diag(ν)]−1(y − µy)

2κ2

)]

which is a kernel of the inverse gamma distribution, i.e. (σε | y,ν,ω,β) ∼ IG(nε, sε) where

nε = nε0 + 3NT/2 and sε = sε0 +
∑

itνit + (y − µy)
�[diag(ν)]−1(y − µy)/(2κ2).
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π(νit | yit, ωi,β, σε) ∝ f(yit | θ, νit, ωi)f(νit | σε)

∝ (κ2σενit)
−1/2 exp

[
−1

2

(yit − x�
itβ − κ1νit + ωi)

2

κ2σενit

]
σε exp

(
−νit
σε

)

∝ νit
−1/2 exp

[
−1

2

([
κ2
1

κ2σε

+
2

σε

]
νit +

(yit − x�
itβ + ωi)

2

κ2σε

1

νit

)]

which is a kernel of the generalized inverse Gaussian distribution, denoted by

(νit | yit, ωi,β, σε) ∼ GIG(1/2, χit, ψit) where

χit =
(yit − x�

itβ + ωi)
2

κ2σε

and ψit =

[
κ2
1

κ2

+ 2

]
1

σε

.

π(σ2
ω | ω) ∝

[∏
if(ωi | σ2

ω)
]
π(σ2

ω)

∝ (σ2
ω)

−N/2 exp

[
− 1

2σ2
ω

ω�ω

]
(σ2

ω)
−(nω0+1)

exp

[
−sω0

σ2
ω

]

∝ (σ2
ω)

−(nω0+N/2+1)
exp

[
− 1

σ2
ω

(
sω0 +

ω�ω

2

)]

which is a kernel of the inverse gamma distribution, i.e. (σ2
ω | ω) ∼ IG(nω, sω) where

nω = nω0 +N/2 and sω = sω0 + ω�ω/2.

Let IA(·) be the indicator function of a subset A, then

π(ω | y,ν,θ) ∝ f(y | θ,ν,ω)f(ω | σ2
ω)

∝ exp

[
−1

2
(y − µy)

�Σ−1
y (y − µy)

]
exp

[
− 1

2σ2
ω

ω�ω

]
IRN

+
(ω)

∝ exp

[
− 1

2

∑
t

(yt − x�
t β − κ1νt + ω)�[κ2σεdiag(νt)]

−1

× (yt − x�
t β − κ1νt + ω)

]
exp

[
− 1

2σ2
ω

ω�ω

]
IRN

+
(ω)
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∝ exp

[
− 1

2

(∑
tω

�[κ2σεdiag(νt)]
−1ω

+
∑

t(yt − x�
t β − κ1νt)

�[κ2σεdiag(νt)]
−1ω

+
∑

tω
�[κ2σεdiag(νt)]

−1(yt − x�
t β − κ1νt)

)]

× exp

[
− 1

2σ2
ω

ω�ω

]
IRN

+
(ω)

Define C−1
ω = [κ2σε]

−1
∑

t[diag(νt)]
−1 + [σ2

ωIN ]
−1
. Note that C−1

ω is diagonal matrix, where

the diagonal elements have the form
[
(κ2σε)

−1∑
tν

−1
it + (σ2

ω)
−1
]
, for i = 1, . . . ,N. Thus

π(ω | y,ν,θ) ∝ exp

[
−1

2

(
ω�C−1

ω ω +
∑

t(yt − x�
t β − κ1νt)

�[κ2σεdiag(νt)]
−1CωC

−1
ω ω)

+ω�C−1
ω

∑
tCω[κ2σεdiag(νt)]

−1(yt − x�
t β − κ1νt)

)]
IRN

+
(ω).

Define mω = −Cω

∑
t[κ2σεdiag(νt)]

−1(yt−x�
t β−κ1νt). Note that

∑
t[κ2σεdiag(νt)]

−1(yt−

x�
t β − κ1νt) is vector which elements have the form

[∑
t(yit − x�

itβ − κ1νit)/(κ2σενit)
]
, for

i = 1, . . . ,N. Thus

π(ω | y,ν,β, σε, σ
2
ω) ∝ exp

[
−1

2

(
(ω −mω)

�C−1
ω (ω −mω)

)]
IRN

+
(ω),

which is the kernel of the truncated Gaussian distribution on RN
+ , i.e. (ω | y,ν,β, σε, σω) ∼

NRN
+
(mω,Cω).
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